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We derive expressions for the bulk viscosity of suspension of gas bubbles in an
incompressible Newtonian liquid that exsolves volatiles. The suspension is modelled
as close packed spherical cells and is represented by a single cell (‘cell model’). A cell,
consisting of a gas bubble centred in a spherical shell of a volatile-bearing liquid,
is subjected to decompression that is applied at the cell boundary, and the resulting
dilatational boundary motion and driving pressure are obtained. The dilatational
motion and the driving pressure are used to define the bulk viscosity of the cell, as
if it were composed of a homogeneously compressible fluid. By definition, the bulk
viscosity is the relation between changes of the driving pressure and changes in the
resulting expansion strain rate. The bulk viscosity of the suspension is obtained in
terms of two-phase parameters, i.e. bubble radius, gas pressure and the properties
of the incompressible continuous liquid phase. The resulting bulk viscosity is highly
nonlinear. At the beginning of the expansion process, when gas exsolution is efficient,
the expansion rate grows exponentially while the driving pressure decreases slightly,
which means that the bulk viscosity is formally negative. This negative value reflects
the release of the energy stored in the supersaturated liquid and its transfer to
mechanical work during exsolution. Later, when bubbles are large and the gas influx
decreases significantly, the strain rate decelerates and the bulk viscosity becomes
positive as expected in a dissipative system. We demonstrate that amplification of
seismic waves travelling through a volcanic conduit filled with a volatile saturated
magma may be attributed to the negative bulk viscosity of the compressible magma.
Amplification of an expansion wave may, at some level in the conduit, damage the
conduit walls and initiate the opening of a new pathway for magma eruption. We
also consider the energy related to positive and negative bulk viscosities.

1. Introduction
Bulk viscosity is a physical property of compressible fluids that relates the changes

in applied stresses to the resultant change in expansion strain rate (Malvern 1969).
Suspensions of gas bubbles that are trapped in a continuous incompressible liquid
phase may be regarded as a uniformly compressible fluid. Several expressions for
the bulk viscosity of such suspensions, assuming constant mass of the gas in the
bubbles, have been derived. Using the procedure of averaging of periodic structures
of a multi-phase material, which is widely applied to estimate effective properties of
composite materials (e.g. Christensen 1979), Taylor (1954) derived an expression for
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Figure 1. Cell models of a gas–liquid suspension (magma). Pgas – gas pressure; Pamb – ambient pres-
sure; Psol – solubility pressure; R – bubble radius; S – cell radius; r – radial coordinate; t – time; α – gas
volume fraction; C – volatile concentration (mass fraction); Cave – average volatile concentration in
the liquid shell; ρliq – liquid density; ρsus – density of the suspension (the cell); mgas – mass of gas in
the bubble (increases with time); η – shear viscosity of the liquid; ζ – bulk viscosity of the liquid.
(a) A pack of spherical cells, each composed of a gas bubble with radius R centred in a spherical
liquid shell with outer radius S . The cells are arranged in a three-dimensional lattice with some
overlap, so that gas volume fraction is α = (R/S)3. (b) A two-phase cell containing an expanding gas
bubble in an incompressible viscous liquid shell. The liquid is oversaturated in dissolved volatiles,
but at the liquid–bubble interface volatiles are transferred into the bubble and local equilibrium is
attained (equation (3.7)). (c) One-phase cell containing a single compressible fluid. The properties
of the fluid are uniform throughout the cell, but vary with time so they represent the effective
properties of the two-phase cell.

the effective bulk viscosity, ζ, of such a suspension:

ζ =
4

3

η

α
, (1.1)

where the volume fraction of gas is low (α � 1) and the shear viscosity of the
liquid, η, is Newtonian. For infinitely small gas volume fraction the bulk viscosity
goes to infinity, as in the incompressible liquid. Later studies refined the expression
for the bulk viscosity of similar suspensions by accounting for higher gas volume
fraction (Prud’homme & Bird 1978). The suspension was regarded as close packed
spherical cells, each cell containing a spherical bubble surrounded by a viscous liquid
shell (figure 1). The pressure at the boundary of the cell was calculated twice: in
the ‘actual’ two-phase cell and in an equivalent cell containing a single compressible
phase of unknown viscosity. Equating the pressures and the strain rates in the two
cells yielded the bulk viscosity of the non-dilute suspension, which is smaller than
equation (1.1) by a factor of 1− α. Prud’homme & Bird (1978) and Aksel (1995) also
derived expressions for the bulk viscosity of similar suspensions of non-Newtonian
liquids using a cell model. These cases with no volatile mass flux are applicable to
the field of processing technology, e.g. when gas bubbles are introduced and trapped
in water or in polymer liquids.

In many cases transfer of volatiles into the bubbles cannot be ignored. For ex-
ample, explosive volcanic eruptions, one of the most energetic phenomena on Earth,
are driven by gas exsolution from a supersaturated melt into bubbles. This expands
the volume of the magma by up to a factor of four, accelerates the bubbly magma,
fragments it into pumice and ash and accelerates them to near-sonic or supersonic vel-
ocities (Woods 1995). Examples of such eruptions include Santorini (Greece, ∼ 1600
BC), Mt. St. Helens (USA, 1980), Pinatubo (Philippines, 1991). Less energetic erup-
tions lead to lava flows, as in low-viscosity basalt effusing on Hawaii, or if the magma
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is more viscous, to the formation of lava domes as in the case of Mt. St. Helens late
activity during 1981–1986; Mt. Unzen (Japan, 1991–1993) and the present eruptions
of the Soufrière Hills (Montserrat, 1995 to present) and Popocatepetl (Mexico, 1998 to
present). These lava domes are unstable and in many cases gravitational collapse may
trigger an explosive eruption. Treating the active magmatic conduit as a uniformly
compressible fluid of well-characterized effective properties facilitates modelling of
the phenomenon. Such an approach is useful in modelling the dynamics of flow in
the conduit (e.g. Massol & Jaupart 1999). It is also important for modelling the
interaction of the magma-filled conduit with seismic waves. The bulk viscosity of the
compressible fluid is the least known property, but is essential for quantifying these
effects.

In this paper we examine the bulk viscosity of a compressible bubbly suspension
where exsolution of volatiles drives expansion. We obtain the expression for the bulk
viscosity using its definition: the differential relation between the driving pressure
and the expansion strain rate. This approach is an extension of previous models
mentioned above, and yields the same results in the condition of no gas flux.

2. The physical model
2.1. The suspension

We consider a suspension of equally sized and evenly distributed gas bubbles in an
incompressible liquid. The suspension is divided into closely packed non-interacting
cells. Each cell is spherical and consists of a stationary gas bubble centred in a
spherical liquid shell (figure 1). The cells are arranged so that the volume fraction
of the suspension, α, equals the volume fraction of a bubble of radius R in a cell of
radius S:

α =
R3

S3
. (2.1)

The liquid is Newtonian and incompressible, and its volume (4πS 3
0/3) is conserved;

the subscript zero denotes the state where the bubble vanishes (R → 0). The total
volume of the cell is 4πS3/3 = 4π(S3

0 + R3)/3. The liquid dissolves volatiles as a
function of pressure. Following decompression, the liquid becomes supersaturated,
bubbles nucleate and grow and consequently the suspension undergoes dilatational
motion. We assume a single nucleation event. The expansion kinetics is limited by the
viscous resistance of the liquid shell and the diffusion of volatiles through the liquid
into the bubble.

Each cell in the suspension is a closed system and no mass is allowed to escape
from the cell boundary. Volatile mass flux is allowed between the liquid and the
gas bubble. The pressure at the boundary of each cell is the ambient pressure of
the suspension, i.e. the bubbles do not interact mechanically. Under these conditions,
the dilatational behaviour and properties of a single cell are identical to those of the
whole suspension. Treating the suspension as a single cell with spherical symmetry
simplifies the mathematical formulation to a one-dimensional (radial) model.

The effective bulk viscosity of such a suspension is obtained by treating it as
a homogeneously compressible fluid (figure 1). This approach is justified when the
diameter of the cells is much shorter than the diameter of the conduit through which
the suspension flows or the wavelength of acoustic waves that travel through the
suspension.
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2.2. Pressures in the suspension

To understand the pressures in the expanding suspension, we first consider a simpler
system where there is no volatile mass exchange between bubbles and the liquid.
Following decompression, the suspension expands until the gas pressure in the bubbles
is in balance with the ambient pressure and stress due to surface tension, Pgas = Pamb +
Psurf . The transient pressure that drives expansion of the non-exsolving suspension is
Pdrive = Pgas − Pamb − Psurf . During the transient stage, the driving pressure is equal
to the viscous resistance of the liquid shell, Pdrive = Pvisc . Thus, at any given moment
during expansion, if Pamb is elevated to equate with Pgas−Psurf , the system equilibrates
mechanically and expansion ceases.

In the more complex system, where volatile mass flux is allowed, elevating Pamb

to equate with Pgas − Psurf is not sufficient to ensure equilibrium. If the melt is
supersaturated with respect to Pgas , volatile influx and bubble expansion will continue.
Mass flux ceases only if chemical equilibrium is also satisfied. For that, Pamb should be
elevated to the solubility pressure, Psol , which is in equilibrium with the supersaturated
liquid and higher than with Pgas . This pressure is related to the average volatile
concentration in the liquid shell, Cave , through Henry’s solubility law:

Psol =

(
Cave

KH

)n
= P0

(
Cave

C0

)n
, (2.2)

where KH is Henry’s constant, n depends on the nature of the liquid and volatile
species, P0 and C0 refer to the saturation pressure and concentration respectively (then
R = 0). When Psol − Pamb = 0, chemical equilibrium is established immediately and
mechanical equilibrium is reached shortly after. The pressure driving the expansion
of the exsolving suspension is the difference between the thermodynamic solubility
pressure and the ambient pressure:

Pdrive = Psol − Pamb .

2.3. The hydrodynamics of an expanding compressible fluid – the one-phase cell

At the macroscopic scale, the suspension is regarded as a uniformly compressible
fluid (§ 2.1). The model accounts for the equation of continuity and the equation of
motion of the compressible fluid. All equations are written with spherical symmetry
and assuming isothermal conditions.

The equation of continuity is

∂ρsus

∂t
+

1

r2

∂

∂r
(ρsusr

2vsus ) = 0, (2.3)

where vsus is the radial velocity in the cell and ρsus is the average density of the
suspension. Using the ‘actual’ structure of the fluid (figure 1), the density of the cell,
ρsus , is the mass of the cell, msus , divided by its volume:

ρsus =
msus

4
3
πS3

. (2.4)

Substitution of (2.4) into (2.3) yields the divergence of the velocity field which is the
expansion strain rate:

div vsus =
1

r2

∂(r2vsus )

∂r
= 3

Ṡ

S
, (2.5)

where the overdot denotes the time derivative. The resulting expansion strain rate
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(2.5) is independent of the radial coordinate, and thus is uniform throughout the fluid.
The uniform strain rate and the homogeneity of the fluid mean that the stress tensor
is also uniform. Thus, the equation of fluid motion in spherical symmetry (neglecting
inertial terms),

− 1

r2

∂

∂r
(r2σrr) +

σθθ + σφφ

r
= 0, (2.6)

is reduced to

σrr = σθθ = σφφ, (2.7)

where σrr , σθθ , and σφφ are components of the total stress tensor in spherical co-
ordinates. The total stress components consist of the fluid thermodynamic (solubility)
pressure, Psol , and the stresses driving expansion (see § 2.2):

σrr = −Psol + Pdrive . (2.8)

The total stress acting at the cell surface is Pamb:

σrr|r=S = −Pamb . (2.9)

Thus, the driving pressure is the difference between solubility and ambient pressures:

Pdrive = Psol − Pamb . (2.10)

The definition of bulk viscosity, following Malvern (1969), accounts for nonlinear
constitutive relations of the expanding fluid; it is the differential relation between the
driving pressure (2.10) and the strain rate (2.5):

ζ =
∂(Pdrive)

∂(div vsus )
. (2.11)

2.4. Bulk viscosity of the suspension in terms of the bubble growth dynamics

We wish to express bulk viscosity (2.11) in terms of the ‘actual’ two-phase cell model
parameters (R(t), α and gas density ρgas (t)). First we substitute equation (2.1) into
(2.5) and obtain the expansion strain rate of the one-phase cell in terms of the bubble
radius and gas volume fraction:

div vsus = 3
Ṙ

R
α. (2.12)

The differential of the expansion strain rate (2.12) is

d(div vsus ) =

{
3
Ṙ

R
α

[
R̈

Ṙ
+
Ṙ

R
(2− 3α)

]}
dt. (2.13)

To obtain the driving pressure in terms of the two-phase parameters, we express
the solubility pressure (or Cave) in terms of the concentration of volatiles in the liquid.
The equation of mass conservation of volatiles in the cell relates the mass of gas in
the bubble to the difference between the initial volatile concentration (C0) and the
remaining average volatile concentration (Cave):

4
3
πR3ρgas = 4

3
πS3

0ρliq (C0 − Cave), (2.14)

where ρgas is the density of the gas and ρliq is the density of the incompressible liquid.
Substituting (2.2) into (2.14), yields the equation for the solubility pressure:

Psol = P0(1− δ)n, (2.15)
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where δ is the mass fraction of volatile in the bubble from the total volatile mass:

δ =
R3ρgas

S3
0ρmeltC0

, 0 < δ 6
C0 −KHP

1/n
amb

C0

< 1. (2.16)

Psol (and Cave) decrease during exsolution from the initial saturation pressure (P0) to
Pamb . The maximum δ-value is reached when the volatile content in the liquid is in
equilibrium with ambient pressure.

Substitution of (2.15) and (2.16) into (2.10) and differentiation yields the derivative
of the driving stress of expansion:

d(Pdrive) = d(Psol − Pamb) =

[
P0n(1− δ)n−1δ

(
3
Ṙ

R
+
ρ̇gas

ρgas

)
+ Ṗamb

]
dt. (2.17)

Substituting (2.13) and (2.17) into (2.11) yields

ζ = −
P0n(1− δ)n−1δ

(
3
Ṙ

R
+
ρ̇gas

ρgas

)
+ Ṗamb

3
Ṙ

R
α

[
R̈

Ṙ
+
Ṙ

R
(2− 3α)

] . (2.18)

Equation (2.18) is a general expression which allows the calculation of bulk viscosity
of a suspension with the known bubble growth parameters: R(t), α(t), ρgas (t) and
Pamb(t).

2.5. Dynamics of bubble growth – two-phase cell

To solve the evolution of the bubble size and gas density in an exsolving suspension,
we adopt a bubble growth model that is based on the formulation of Rayleigh (1917).
We use a modified model that accounts for the requirements of a volatile-dissolving
system (Proussevitch, Sahagian & Anderson 1993; Lyakhovsky, Hurwitz & Navon
1996).

The equations of continuity and motion of the incompressible viscous liquid within
the spherical shell (R < r < S ) are

1

r2

∂

∂r
(r2vliq ) = 0, (2.19)

−∂P
∂r

+
1

r2

∂

∂r

(
2ηr2 ∂vliq

∂r

)
− 4ηvliq

r2
= 0, (2.20)

where vliq is the radial velocity in the liquid shell and (η is its Newtonian shear viscosity,
which is radially variable. We neglect the changes of liquid density with variations
of volatile content. These are common assumptions in the case of water-bearing
silicic melts where density changes only by 2% upon addition of 10 mole percent of
water (Dingwell 1998). Inertial terms in the equation of motion are neglected, as the
Reynolds number is typically small (Re ≡ ṘSρliq/η � 1).

The equation of continuity is integrated to obtain the velocity distribution in the
liquid phase:

vliq = ṘR2 1

r2
(R < r < S). (2.21)

The pressure in the fluid at the gas bubble interface is balanced by the gas pressure
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and surface tension:

−P (R) + 2η

(
∂vliq

∂r

)
r=R

= −Pgas + Psurf . (2.22)

The pressure in the fluid at the boundary of the cell equals the ambient pressure:

−P (S) + 2η

(
∂vliq

∂r

)
r=S

= −Pamb(t). (2.23)

Integrating the equation of motion (2.20), using (2.21), and the boundary conditions
(2.22) and (2.23), yields

Pvisc = 4
Ṙ

R
ηeff = Pgas − Pamb − Psurf , (2.24a)

where the effective Newtonian viscosity, ηeff , resisting the growth of bubbles (Lensky,
Lyakhovsky & Navon 2001) is

ηeff = 3R3

∫ S

R

η

r4
dr. (2.24b)

Equation (2.24a) relates gas pressure to the bubble radius. To solve for these two
quantities, we need another equation containing information on gas pressure and/or
bubble size. The information comes from the rate of volatile mass accumulation in
the bubble by the mass flux through the bubble–liquid interface:

4π

3

d

dt
(ρgasR

3) = 4πR2ρliqD
∂C

∂r

∣∣∣∣
r=R

, (2.25)

where D is volatile diffusivity in the liquid and C is the weight fraction of volatiles
in the liquid. The gas is assumed to be ideal, thus gas density is proportional to gas
pressure through the equation of state:

ρgas = Pgas

M

GT
, (2.26)

where M is the molar mass of the volatile species, G the gas constant and T
temperature, which is assumed to be constant.

The concentration gradient is obtained from the diffusion–advection equation for
volatiles in the liquid:

∂C

∂t
+
∂C

∂r
vliq =

1

r2

∂

∂r

(
Dr2 ∂C

∂r

)
. (2.27)

The equation is subjected to two boundary conditions. From the mass conservation
requirement, we allow no volatile mass flux across the outer cell boundary:

∂C

∂r

∣∣∣∣
r=S

= 0. (2.28)

The boundary condition at the bubble interface relates the concentration of volatiles
to gas pressure through Henry’s solubility law (evaporation is assumed to be instan-
taneous):

C(r = R, t) = KHP
1/n
gas . (2.29)

The radial growth of the bubble and the gas pressure in the bubble are obtained
by simultaneous solution of the equations of motion (2.24) and the equations of
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volatile mass transfer (2.25) and (2.21), (2.27)–(2.29). These equations are coupled, as
the boundary conditions of both volatile diffusion and viscous resistance depend on
Pgas . This set of equations requires numerical solutions (e.g. Proussevitch et al. 1993;
Lyakhovsky et al. 1996). Analytical solutions for growth, where the effects of mass
transfer and viscous resistance are de-coupled, were obtained by Navon, Chekhmir
& Lyakhovsky (1998) and Lyakhovsky et al. (1996) and will be discussed below in
relation to bulk viscosity.

3. Bulk viscosity solutions
To understand the dynamic behaviour of the expanding suspension, we calculate

and draw its unloading path, i.e. its path in the space of driving pressure and strain
rate. We consider a suspension that is suddenly decompressed to Pamb from the initial
saturation pressure (P0 when no bubbles present and Pi when bubbles of radius Ri
are initially equilibrated).

First we demonstrate that our approach to determining bulk viscosity (equa-
tion (2.12)) reproduces the solutions of bulk viscosity for the case of no mass flux
(equation (1.1)). We use the same assumptions as were used by Taylor (1954) in
equation (1.1): the mass of gas and its temperature are constant (PV = const.), the
gas volume fraction is low, surface tension is negligible and the shear viscosity of
the incompressible liquid is uniform. As was shown, the driving pressure in a non-
exsolving suspension is Pdrive = Pgas − Pamb . In these conditions the expansion strain
rate (equation (2.13)) is governed only by the viscous resistance of the liquid around
the bubble, which is represented by (2.24). Substitution of (2.24) and (2.13) and Pdrive

from above into (2.11) reproduces equation (1.1):

ζ =
d(Pgas − Pamb)

d
(

3α
4η

(Pgas − Pamb)
) =

4

3

η

α
. (3.1)

Now, we allow gas influx from the supersaturated liquid into the bubbles (the
pressures of both systems were presented in § 2.2). Three governing factors control
the dynamics of bubble growth from a supersaturated liquid (§ 2.5):

(i) the resistance of the viscous liquid to bubble expansion (equation (2.24));
(ii) the efficiency of volatile diffusion (equations (2.25), (2.27)–(2.29));
(iii) the size of the liquid shell containing oversaturated volatiles (equation (2.14)).

Figure 2 shows a typical growth path, calculated numerically, and the three analytical
end-member solutions. The example given is of a vesiculating magma, where the
liquid is a silicic melt, the dissolved volatile is water and the rest of parameters are
listed in table 1. We chose this system because of its significance in volcanic processes
and because it is well-constrained by experimental studies (see the review by Navon
& Lyakhovsky 1998). Below, we describe the three bubble growth regimes and present
the respective expression for the bulk viscosity in each regime.

3.1. Stage 1 – expansion controlled by the viscous resistance of the liquid

In the initial stages, immediately after decompression, bubbles are still small enough
so that the diffusive flux of volatiles keeps the gas pressure in equilibrium with the
supersaturated melt and prevents fast fall of gas pressure. Initially, bubbles of radius
Ri are equilibrated under pressure Pi (in practice Pi = P0). The ambient pressure
suddenly drops and consequently the now supersaturated liquid exsolves water to
the expanding bubbles and maintains Pgas ≈ Pi. The viscous resistance of the liquid
(equation (2.24)) is the limiting process that governs the rate of bubble expansion.
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Initial radius Ri = 0.1 µm
Initial cell size Si = 54 µm
Initial water concentration Ci = 0.05
Initial supersaturation pressure Pi = 150 MPa
Ambient pressure Pamb = 120 MPa
Temperature T = 800 ◦C
Diffusivity of water in the melt D = 10−12 m2 s−1

Shear viscosity of the melt η = 5 108 Pa1 s1

Gas constant G = 8.314 J mol−1 K−1

Henry constant KH = 4 10−6 Pa−0.5

Power of pressure in Henry’s law n = 2
Viscous time scale τv = η/∆P ≈ 17 s
Diffusive time scale τd = S2

0 /D ≈ 3000 s

Table 1. Parameters of the numerical simulations.
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Figure 2. Bubble growth from a supersaturated magma under constant ambient pressure. The
numerical solution (thick solid curve) is presented along with three asymptotic solutions (equa-
tions (3.2), (3.5) and (3.7)). The exponential solution (dashed-dotted curve) fits well the numerical
solution for t < τv (stage 1). At longer times, but still shorter than the diffusive time scale (stage 2),
the numerical solution approaches the square-root approximation. Growth ceases when the melt
shell approaches saturation, at t� τd (stage 3). Also shown (thin solid curve) is the solution for the
case of growth with no mass flux (nmf). The bubble grows to a smaller final size compared with
the numerical case (Rf nmf < Rf) and on a shorter time scale τnmf = τv(P0 − Pamb)/Pamb .

Integrating (2.24), assuming low gas volume fraction (α � 1), negligible surface
tension, and constant viscosity (due to the relatively flat water concentration profile),
yields the exponential growth law:

R = Ri exp

(
t

τv

)
, (3.2)

τv =
4η

Pi − Pamb

. (3.3)

Navon et al. (1998) verified the exponential growth law (3.1) experimentally. The
exponential growth continues as long as Pgas remains close to Pi, which is when
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t < τv . At later times, Pgas relaxes and falls from Pi to Pamb and consequently bubble
growth decelerates (compare with the numerical solution in figure 2).

During this stage the solubility pressure continuously decreases (equation (2.15)),
as volatiles are exsolved from the liquid. Thus, the driving pressure relaxes, while the
expansion strain rate increases. Substitution of (3.2) into (2.18) yields an approximately
constant bulk viscosity with negative sign:

ζ ≈ −Pinτv
3

ρgas

ρliqCi
. (3.4)

3.2. Stage 2 – expansion controlled by the rate of volatile diffusion

At longer times, t � τv , as bubbles expand and the surface/volume ratio decreases,
diffusive flux of water cannot maintain the gas pressure close to the initial saturation
pressure (P0). The gas pressure then falls to slightly above ambient pressure. At this
stage, bubble growth is impeded by the diffusive flux of water into the bubble. When
diffusion is quasi-static (low Péclet number) and the volatile concentration at S is
still close to the initial value (Cr=S ∼ Ct=0), equation (2.27) gives the concentration
gradient at the bubble interface (∂C/∂r)R = (C0 − CR)/R (Lyakhovsky et al. 1996).
Substitution of this gradient into the equation of volatile mass balance (2.25) yields
the square-root growth law

R =
√
Deff t, (3.5)

where the effective diffusivity is Deff = 2Dρliq (C0 − CR)/ρgas .
The square-root solution is applied after the gas pressure drops to slightly above

ambient pressure, and continues while α� 1 and until diffusion starts to deplete the
dissolved volatiles from the cell boundary (i.e. CS < C0). This occurs before reaching
the characteristic time scale for diffusion τd ≈ S2

0/D, which expresses the time it takes
to diffuse water from the cell boundary to the bubble interface (i.e. when τv � t < τd).

The analytical solution of bulk viscosity at the diffusive regime, obtained by
substitution of (3.5) into (2.18), is a negative linear function of time:

ζ ≈ −2P0n
ρgas

ρmeltC0

t. (3.6)

Bulk viscosity is still negative under the conditions of the square-root solution.
At longer times, t > τd, the diffusive flux diminishes and the expansion strain rate
decreases and thus the bulk viscosity becomes positive, as will be discussed in § 3.4.

3.3. Stage 3 – finite shell and approach to equilibrium

In a multi-bubble system (figure 1) equilibrium is attained when the excess volatiles are
transferred into the bubble, i.e. when the solubility pressure approaches ambient pres-
sure (Psol ∼ Pamb). This occurs when t� τd. The radius of the bubble in equilibrium
is determined by consideration of volatile mass conservation (equation (2.14)),

R3 = S3
0

ρliqGTKH

M

(
P

1/n
0 − P 1/n

amb

Pamb

)
. (3.7)

Bulk viscosity has no meaning when the fluid is at rest. When approaching equilib-
rium, the system relaxes and the driving pressure (Psol−Pamb) decreases to a negligible
value; so does the expansion strain rate. There is no simple analytical solution for
this stage and we only show that the sign of bulk viscosity is positive (figure 4, when
t� τd).
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Figure 3. Expansion dynamics based on the two-phase cell model (see table 1 for list of parameters).
(a) Bubble radius. The square-root approximation (dashed curve) follows the numerical solution
(solid curve) until the diffusive time scale τd = S2

0 /D ∼ 3000 s. The viscous time scale is too short
to be presented in this diagram (τv ∼ 0.02τd). (b) The driving pressure (Psol − Pamb) continuously
decreases from the initial supersaturation pressure to zero when t > 5τd. (c) The expansion strain
rate (div vsus ) reaches a maximum shortly after t ∼ τd. At t > τd, expansion decelerates, and
approaches zero when t > 5τd.

At equilibrium, the volume of the bubble is proportional to the volume of the
surrounding melt (S3

0 ). When approaching equilibrium, the shell size (S ) is a sensitive
parameter of the model. If the ‘observation time’ is comparable to or longer than
the diffusive time scale then small variations in the choice of the cell size will
influence the bubble size. Otherwise, when the diffusive time scale is longer than
the observation time, then shell size is effectively infinitely large and one of the two
solutions (equations (3.2) and (3.5)) may describe the growth path. The typical shell
size, S , in silicic magmas is in the range 10−5–10−2 m, corresponding to bubble number
density of 105–1015 bubbles per cubic metre.

3.4. Dynamic evolution of the expanding cell – numerical solutions

We solve for the dynamic evolution of the expansion of the suspension under the
control of the three governing factors (diffusion, viscous resistance and finite liquid
reservoir). We obtain the evolution of the driving pressure, expansion strain rate and
bulk viscosity by substitution of the solutions of the bubble growth evolution into
(2.13), (2.17) and (2.18) respectively. We modified the numerical code of Lyakhovsky
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Figure 4. Driving pressure vs. expansion strain rate for expanding magma based on the two-phase
cell simulations (figure 3). The slope of the curve is the bulk viscosity. Note that expansion
begins with negative bulk viscosity, driving pressure decreases (figure 3b), while the expansion
strain rate increase (figure 3c). The transition from negative to positive bulk viscosity occurs after
about the diffusive time. The enclosed area represents the work done by the cell (4.5). The initial
supersaturation pressure and the diffusive time are used for scaling the driving pressure and the
strain rate.

et al. (1996), which solves the set of equations of the two-phase cell model, to calculate
the radius of a growing bubble and the pressure in it.

Figure 3 follows the evolution of bubble growth, the driving pressure of the cell
and the expansion strain rate (see table 1 for parameters). As the bubble grows,
volatiles exsolve and the driving pressure drops. The expansion strain rate initially
increases and reaches maximum shortly after t ∼ τd and from then on the strain
rate relaxes towards equilibrium. The time of maximum expansion strain rate relates
to the estimated time for maximum gas influx, i.e. about t ∼ τd. When t > τd, the
expansion strain rate decreases, and when t > 5τd, the system is almost relaxed; the
bubble reaches its final radius (R ∼ Rf), the solubility pressure is close to ambient
pressure (Psol ∼ Pamb) and the strain rate vanishes (div(vsus ) ∼ 0).

Figure 4 follows the unloading path of the one-phase cell on a driving pressure–
strain rate diagram. The slope of the curve is the bulk viscosity. Note that expansion
begins with negative bulk viscosity and continues with positive sign. The sign inversion
occurs when the expansion rate reaches its maximum at about the diffusive time scale
(figure 3c). Until the diffusive time, gas flux is high enough to drive accelerated
expansion even though the driving pressure decreases (figures 3b and 3c). From then
on, expansion decelerates as expected from a dissipative system.

The analytical solutions for the bulk viscosity closely follow the numerical simu-
lation under relevant conditions (figure 5). When t < τv (exponential bubble growth),
bulk viscosity is constant both in the analytical solution and in the numerical solution,
with less than 10% deviation between the solutions (figure 5a). At τv � t < τd (square-
root growth law), bulk viscosity is negatively linear with time (figure 5b). At later
times, t > τd, the system relaxes toward equilibrium. Both the driving pressure and
the strain rate decrease with time and the bulk viscosity is positive (figures 3 and
4). The sign of the bulk viscosity and energetic considerations will be discussed
in § 4.2.

In the next section we discuss the significance of negative bulk viscosity in volcanic
conduits, focusing on the limit of short observation time, i.e. infinite shell size.
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Figure 5. Bulk viscosity vs. time. The calculation uses the parameters listed in table 1. (a) During
stage 1, at t < τv , the bulk viscosity is negative and deviates by less than 10% from the analytically
calculated value (3.4). Time is scaled to τv and bulk viscosity is scaled to the melt shear viscosity.
(b) During stage 2, when τv < t < τd, the bulk viscosity is negative and the numerical solution
follows the linear approximation of the analytical solution (3.6).

4. Discussion
The flow of bubbly suspensions is a complex phenomenon. Its mathematical descrip-

tion requires the determination of the constitutive relations (including bulk viscosity).
For example, Massol & Jaupart (1999) have demonstrated that significant pressure
gradients are expected to develop across the conduit due to the compressibility of
the magma. Here we have derived expressions for bulk viscosity accounting for the
exsolution of supersaturated volatiles into the growing bubbles. We use the numerical
values of the bulk viscosity to evaluate the amplification of waves in the passage of a
decompression front through a compressible magma due to a negative bulk viscosity.

4.1. Amplification of rarefaction waves along volcanic conduits

Active volcanic conduits, filled by volatile-bearing magma, are known to amplify
seismic waves. The amplification was recently attributed to the effect of a ‘wave trap’,
caused by the shape of the conduit and the contrasting seismic velocities across the
conduit walls (Neuberg et al. 2000). This effect was calculated under the assumption
that, in the relevant time scale, magma is purely elastic with respect to compressional
waves (i.e. the amplitude of the waves is not attenuated by the compressible magma).
Waves travelling through a visco-elastic fluid are attenuated due to viscous dissipation.
However, if the bulk viscosity is negative, the system amplifies the wave and the system
is unstable. Volatile-saturated magma is expected to amplify expansion waves rather
than attenuate them. This amplification mechanism may provide another explanation
for the effects of wave amplification in volcanic conduits and the stability of volcanic
conduits.

We wish to examine whether an expansion strain wave of initial amplitude ε0 can
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Figure 6. Amplification of a rarefaction wave along a conduit. (a) The ambient pressure profile
along the conduit, i.e. magma-static pressure. (b) Bulk viscosity, in units of shear viscosity of the
liquid, ζ/η. (c) Gas volume fraction. (d ) Amplification factor. As the wave propagates downwards,
it amplifies exponentially, and at some level the walls of the conduit will not resist the high strains.
Conduit failure occurs when the product of the initial strain amplitude and the amplification factor
is higher than the strength of the conduit walls (ε0 exp(Lvpρsus/ζ)� E).

be amplified to such levels that the conduit walls are damaged, i.e. a critical strain,
εcr , that the wall rocks cannot resist, is exceeded.

Consider a narrow volcanic conduit fed by magma with initial water concentration
C0. As the magma rises it decompresses and degasses by growing bubbles. If the
ascent is slow enough, as is the case during the formation of lava domes (e.g. the
present activity in Montserrat and Popocatepetl) the bubbles grow to equilibrium
with the ambient magma-static pressure. Gas exsolution starts once the magma-static
pressure is lower than the saturation pressure corresponding to C0. Bubbles continue
to grow as they move with the magma to higher levels (lower pressure). We assume
a static magma column (figure 6) with equilibrium gas volume fraction increasing
up the conduit and magma density decreasing upwards. If, for some reason, the
ambient pressure suddenly drops at t = 0, the pre-existing bubbles start expanding
and additional water exsolves from the now supersaturated melt into the bubbles. As
shown in § 3.1, the expansion of bubbles (and the suspension) is roughly exponential
at the initial stages (t < τv , usually < 10 s) and the bulk viscosity of the suspension
at this stage is negative.

In many cases, the dome above the conduit is gravitationally unstable. When part
of it collapses, a rarefaction wave front travels down the conduit with initial amplitude
ε0. On travelling through a visco-elastic fluid, the amplitude of the expansion strain
wave induced by such a front is attenuated with time by a factor

exp

(
−µ
ζ
t

)
. (4.1)

ζ/µ is the ratio of the bulk viscosity to the bulk modulus of the fluid and refers to the
dilatational Maxwell time. However, in the case of a saturated conduit, ζ is negative
and the expansion strain amplifies exponentially with time (equation (4.1)). The strain
induced by the rarefaction wave increases while propagating down the conduit.

The time, t, available for amplification is determined by the length of the ‘negatively
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viscous’ conduit, L, and by the wave velocity, vp:

t ∼ L/vp. (4.2)

L is measured from the depth of nucleation (∼ saturation level) up to the place
where magma is highly foamed and the bulk viscosity is no longer negative even at
short times. The amplification at any depth is limited by both the duration of the
negative viscosity regime (conservatively estimated as t < τv), and by the period of
the expansion wave. The bulk viscosity of silicic magma with water bubbles (n = 2)
is

ζ ≈ −3η
ρgas

ρliqC0

P0

∆P
,

and the bulk modulus is

µ ∼ v2
pρsus . (4.3)

The condition for damage to the conduit walls, using equations (4.1)–(4.3) is

exp

(
−LvPρsus

ζ

)
>
εcr

ε0
. (4.4)

As shown in figure 6(d ) the amplification factor increases rapidly and may be exceeded
at depth.

This model is preliminary; however it shows that the effect of wave amplifi-
cation is important in volcanic conduits containing saturated bubble-bearing magmas.
Combining the amplification effects of the ‘wave trap’ (Neuberg et al. 2000) and
the ‘amplifying magma’ may provide a better explanation for the triggering of the
long period (LP) earthquakes that are observed in many volcanic centres and are
used in monitoring volcanoes and to forecast eruptions. Similar effects may amplify
rarefaction fronts initiated by major collapse of a volcanic dome and could trigger
an eruption. Moreover, such conduits are sometimes unstable in the sense that
decompression events, such as landslides, result in an explosive eruption (Melnik &
Sparks 1999). The energy of explosive eruptions derives mostly from the exsolution
of volatiles resulting from the decompression of magma.

4.2. Negative bulk viscosity and energy balance

In most closed mechanical systems, viscosity is positive, in accordance with the concept
of viscous dissipation and the second law of thermodynamics (Landau & Lifshitz
1959; Batchelor 1967). Positive viscosity means that kinetic energy is dissipated to
molecular motion and finally to heat. During expansion of bubble-bearing viscous
melts, bulk viscosity is positive in the case of no volatile flux between the melt and
the gas bubble (Taylor 1954). In a supersaturated magma, the potential energy of the
excess dissolved volatiles in the melt is converted to expansion work of the gas. In some
situations, only part of this energy dissipates to heat via the deformation of the viscous
melt shell. In the presentation of the expanding magma as a single uniform phase
the supersaturation and the associated potential energy can be accounted for by the
magma pressure and bulk viscosity. The sign of the bulk viscosity depends primarily
on the net mechanical power. It is negative when the dissipation of mechanical energy
to heat is lower than the rate of conversion of potential energy of dissolved volatiles to
expansion work. Other systems where the effective viscosity is negative are discussed
in Starr (1968).

The change in the mechanical energy per mass unit (Esus ) of the compressible cell
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Figure 7. (a) Mechanical power of the expanding cell and (b) the energy of expansion, over time.

is the integral of power of the cell (Wsus ) over time:

Esus (t) = −
∫ t

0

Wsus dt′ = −
∫ t

0

1

ρsus

(Psus − Pamb)div vsus dt′. (4.5)

Figure 7(a, b) presents the power and energy of an expanding cell (4.5) under the
conditions listed in table 1. The mechanical power is negative as long as the rate of
added work by volatile exsolution is higher than viscous dissipation, roughly when
t < τd (figure 6b). At longer times, when volatile supply is too slow, the net power
changes sign to positive, and the system dissipates energy. During the whole expansion
process, the total change in energy is positive (figure 6b), with only a small fraction
of the expansion work being dissipated as heat.

5. Summary
(i) The dynamic behaviour of an expanding suspension with volatile exsolution into

the bubbles significantly differs from the case of expansion without mass flux. When
no volatiles are added, the expansion strain rate monotonically decreases with time,
until the gas pressure is equal to ambient pressure. Bulk viscosity is positive, as both
the driving pressure and the expansion strain rate decrease with time. However, when
volatiles exsolve into the bubbles, the expansion strain rate increases initially while
the driving pressure decreases. The effective bulk viscosity in this period is negative.
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The expressions for the bulk viscosity of the suspension with no volatile mass flux
are not applicable for suspensions that exsolve volatiles.

(ii) Expressions for the bulk viscosity of volatile exsolving suspensions are derived
in terms of the evolution of the radius of the bubbles and the gas pressure within
them. We present simplified analytical solutions of the bulk viscosity in two end-
member regimes, where analytical solutions of bubble growth are obtained. Numerical
solutions of the bubble growth model are used to follow the variation in bulk viscosity
and average density during the whole course of expansion.

(iii) A compressible fluid (suspension) with negative viscosity may amplify strains
induced by rarefaction fronts. Such a situation may occur in volcanic conduits filled
with water-saturated magma. The collapse of a volcanic edifice at the top of an active
conduit sends a decompression front down the conduit. As the bulk viscosity at the
initial stage is negative, the rarefaction wave is amplified as it travels downwards.
Below a certain depth, the amplification may be large enough to break the conduit
walls and initiate a volcanic event.

(iv) New analytical solutions were derived for the case of constant ambient and gas
pressure. In these cases the bulk viscosity may be described using the parameters of the
suspension, e.g. liquid properties, initial and final ambient pressure. In more general
cases, the suspension may be obtained using numerical solutions of the two-phase
bubble growth model.
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